Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease.

نویسندگان

  • Atsushi Sato
  • Ken Terata
  • Hiroto Miura
  • Kazuyoshi Toyama
  • Fausto R Loberiza
  • Ossama A Hatoum
  • Takashi Saito
  • Ichiro Sakuma
  • David D Gutterman
چکیده

Adenosine is a key myocardial metabolite that elicits coronary vasodilation in a variety of pathophysiological conditions. We examined the mechanism of adenosine-induced vasodilation in coronary arterioles from patients with heart disease. Human coronary arterioles (HCAs) were dissected from pieces of the atrial appendage obtained at the time of cardiac surgery and cannulated for the measurement of internal diameter with videomicroscopy. Adenosine-induced vasodilation was not inhibited by endothelial denudation, but A(2) receptor antagonism with 3,7-dimethyl-1-propargylxanthine and adenylate cyclase (AC) inhibition with SQ22536 significantly attenuated the dilation. In contrast, A(1) receptor antagonism with 8-cyclopentyl-1,3-dipropylxanthine significantly augmented the sensitivity to adenosine. Moreover, dilation to A(2a) receptor activation with 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamido-adenosine hydrochloride was reduced by the A(1) receptor agonist (2S)-N(6)-(2-endo-norbornyl)adenosine. The nonspecific calcium-activated potassium (K(Ca)) channel blocker tetrabutylammonium attenuated adenosine-induced dilation, as did the intermediate-conductance K(Ca) blocker clotrimazole. Neither the large-conductance K(Ca) blocker iberiotoxin nor small-conductance K(Ca) blocker apamin altered the dilation. In conclusion, adenosine endothelium independently dilates HCAs from patients with heart disease through a receptor-mediated mechanism that involves the activation of intermediate-conductance K(Ca) channels via an AC signaling pathway. The roles of A(1) and A(2) receptor subtypes are opposing, with the former being inhibitory to AC-mediated dilator actions of the latter. These observations identify unique fundamental physiological characteristics of the human coronary circulation and may help to target the use of novel adenosine analogs for vasodilation in perfusion imaging or suggest new strategies for myocardial preconditioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exercise training restores coronary arteriolar dilation to NOS activation distal to coronary artery occlusion: role of hydrogen peroxide.

OBJECTIVE Exercise training has been shown to restore vasodilation to nitric oxide synthase (NOS) activation in arterioles distal to coronary artery occlusion. Because reactive oxygen species are generated during NOS uncoupling and the production of vasodilator H2O2 is increased during exercise in patients with coronary disease, we proposed that H2O2 may contribute to the restoration of vasodil...

متن کامل

Activation of barium-sensitive inward rectifier potassium channels mediates remote dilation of coronary arterioles.

BACKGROUND Conducted vasodilation seems to be critical for the functional distribution of blood flow in the skeletal muscle microcirculation. However, this vasoregulatory phenomenon has not been documented in the coronary microcirculation, and its underlying mechanism remains elusive. Because potassium ions are potent metabolic vasodilators in the heart, by activating vascular inward rectifier ...

متن کامل

The Hemodynamic Effects of Drugs on Myocardial Oxygen Use

The circulatory responses to high equinalgesic doses of morphine are compared with those of pethidin. The decrease in mean arterial blood pressure in case of morphine was 28p.c., with a paralleled and identical de­crease in total peripheral resistance and no negative inotropic effects.  Pethidine decreased blood pressure 54p.c., as a result of peripheral vasodilation of 46p.c. and a sharp drop...

متن کامل

Flow-Induced Dilation of Human Coronary Arterioles Important Role of Ca-Activated K Channels

Background—Flow-induced vasodilation (FID) is a physiological mechanism for regulating coronary flow and is mediated largely by nitric oxide (NO) in animals. Because hyperpolarizing mechanisms may play a greater role than NO in the microcirculation, we hypothesized that hyperpolarization contributes importantly to FID of human coronary arterioles. Methods and Results—Arterioles from atria or ve...

متن کامل

Transmural difference in coronary arteriolar dilation to adenosine: effect of luminal pressure and K(ATP) channels.

Coronary blood flow in the subendocardium is preferentially increased by adenosine but is redistributed to the subepicardium during ischemia in association with coronary pressure reduction. The mechanism for this flow redistribution remains unclear. Since adenosine is released during ischemia, it is possible that the coronary microcirculation exhibits a transmural difference in vasomotor respon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 288 4  شماره 

صفحات  -

تاریخ انتشار 2005